April 02, 2025, by Jürg Meierhofer, Expert Group Smart Services
At the ZHAW Service Lunch on April 2nd, 2025, PD Dr. Jochen Wulf and Prof. Dr. Frank Hannich explored the exciting potential of ‘Hybrid Intelligence for Customer Management’, sharing conceptual possibilities and concrete ZHAW project examples on using generative AI across the customer lifecycle.
What happens when human ingenuity meets AI’s power? You get Hybrid Intelligence (HI) – systems designed for humans and AI to collaborate, achieving more than either could alone.
The goal isn’t replacement, but augmentation.
Their ZHAW research explores HI, especially in customer management and technical service. They highlighted powerful applications like personalized content, churn prediction, and augmented customer support.
A key focus is using Large Language Models (LLMs) for tasks like technical assistance, as examplified in their “Guided Maintenance Copilot” project. This involves Retrieval Augmented Generation (RAG) to ground AI responses in specific knowledge.
Developing effective RAG systems requires careful, test-based optimization across factors like search, model selection, and context size. Different models (CPU vs. GPU) and languages show varying performance.
While LLMs can automate tasks from simple translation to complex reasoning, their findings emphasize: there’s no “one-size-fits-all.” Tailored, optimized solutions are key to unlocking the true potential of human-AI collaboration. Ultimately, the session demonstrated that thoughtful design and testing are crucial for successfully implementing hybrid intelligence solutions.
March 11, 2025, by Jürg Meierhofer, Expert Group Smart Services
The IoT Conference 2025, held on March 11 at the Trafo Hallen Baden, was a resounding success, offering an inspiring glimpse into the future of the Internet of Things (IoT). Under the theme “Shaping the Future of IoT – Technologies, Business Models, Security,” around 20 speakers from industry, research and development, as well as providers and users, presented innovative solutions and application examples to the audience of several hundred people.
While the entire Expert Group was invited to attend the conference under special conditions (including some free tickets), the group also actively contributed to the conference in two significant ways. At the start of the conference, Jürg Meierhofer participated in a panel discussion and shared thoughts about value creation models by IoT-based smart services.
Additionally, Gerrit Schatte, Head of Digital Products at Kistler, delivered a noteworthy presentation. He showcased impressive examples of how Kistler, a leading measurement systems manufacturer, is successfully creating entirely new business areas with digital products through the integration of hardware and software. These digital products enable Kistler not only to offer precise measurement systems but also comprehensive digital solutions that open up new markets and applications. Gerrit Schatte presented three case studies:
Onboard Rail Monitoring for online noise monitoring for rail head conditioning.
Structural Health Monitoring for monitoring the structural health of bridges.
Acceleration of flight tests through advanced data analysis and management platforms.
The presentation demonstrated how Kistler is developing innovative solutions through the integration of IoT and digital products, effectively addressing customer challenges and opening new business fields.
A big thank you goes to the organizers of asut for this inspiring exchange, which made the future of IoT tangible and provided important impulses for the further development and application of these technologies.
March 11, 2025, by Nicolas Lenz, Stefan Keller and Reik Leiterer, Focus Topic Group Spatial Data Analytics
Shortly after the data innovation alliance was founded, geodata analyses were regularly discussed in a dedicated expert group. From 2020-2024, the Innovation Booster Databooster, an initiative managed by the data innovation alliance and powered by Innosuisse, has promoted innovation in the data-driven sector and contributed to the development of new technologies. Within the Databooster, spatial data was one of four focus topics. The transition to the follow-up initiative Innovation Booster Artificial Intelligence has been successfully implemented. The completion of the Databooster is the ideal moment to take stock: where does Switzerland stand in 2024 in terms of GeoAI use?
This document provides an overview of developments over the last four years, highlights changes in GeoAI technologies and application fields, and introduces the actors who have significantly shaped this transformation. It is aimed at researchers, industrial actors and decision-makers, and offers orientation and inspiration for the opportunities and challenges of the next phase of innovation.
GeoAI 2020-2024
The use of artificial intelligence in the GIS context has evolved in recent years from specialized applications to a wide range of innovative technologies. Four years ago, GeoAI was mainly used in the field of computer vision for object and pattern recognition in aerial images and for classifying point clouds. Since then, the range of applications has expanded significantly, including the field of evaluating time series to identify trends or anomalies.
Not only has the number of AI tools increased, but also their possible applications. For example, AI-supported geodata analyses have been used in the areas of mobility (timetable optimization, management of passenger flows), tourism (recommendation systems for excursion destinations and route difficulties), or in the insurance industry (risk assessments, forecasts).
The main reason for this development is that new AI technologies have become suitable for mass use. This has expanded their use not only in a research context, but also in business and public administration. The latter in particular has helped to make innovative applications visible to the general public.
Example: Use of GeoAI in federal agencies – pollen monitoring by MeteoSwiss (from a presentation by Bertrand Loison, FSO – SITC 2024)
A decisive factor for the dissemination of AI applications is the rapid development of language models as part of generative AI. These technologies extend existing applications and create entirely new possibilities. For example, speech-enabled geospatial systems enable improved search in large data collections or more intuitive use of GIS, such as for data collection form creation or to convert text queries into SQL or Python code. These new possibilities and the increased focus on user-friendliness have permanently changed the GeoAI provider landscape. Many new players are developing or using new technologies that manage geodata more efficiently and tap into unused potential. For example, it is difficult to grasp the influence of open source: Suffice to say that open source is playing an increasingly important role, whether as a software component or as an open language or foundation model. It promotes innovation, dissemination, transparency, trust and data protection, and ultimately leads to cost reduction and democratization (through low barriers to entry).
What role do the well-known GIS companies currently play?
Established Swiss GIS providers have long since discovered the use of GeoAI. Well-known providers such as EBP, ESRI Switzerland, Geocloud, GeoDataSolutions, Geowerkstatt, Hexagon or Meteotest (selection not exhaustive) have made significant progress in integrating AI into their GIS applications in recent years. They have successfully introduced AI technologies into their respective target industries and applied them together with clients from the private and public sectors.
Example: ESRI’s Data Science/Deep Learning product family – integrated into Microsoft Azure.
In addition to these established providers, several start-ups have managed to become recognized and established market players in recent years. Companies such as Gamaya, Meteomatics, Picterra and Pix4D have continuously developed their innovative technologies and firmly established them in various industries. Today, these companies stand for the successful transfer of GeoAI innovations from the start-up phase to marketable products and services that are used both nationally and internationally.
Momentum at start-ups and small companies
Young companies are bringing specialized solutions to market, using the latest technologies from AI. It’s about companies like Ageospatial, askEarth, ExoLabs, LaGrand, Litix or UrbanDataLab, which are using new technologies to solve specific challenges in handling geospatial data. In doing so, they are breathing fresh air into the market by pushing the boundaries of traditional applications and opening up geodata to new target groups.
Example: The Geoforge application from Ageospatial – Geospatial analysis with large language models.
These young companies show that the future of GeoAI will not be shaped by established players alone. They are introducing new ideas and approaches that could invigorate the market and set new standards. Whether these young companies will secure a long-term place among the established providers or how the market will develop as a whole remains to be seen. However, it is clear that innovation and adaptability are crucial in a dynamic environment such as GeoAI – for both emerging and established companies.
Innovative start-ups and small companies in geoinformatics
askEarth AG(ask.earth) Voice-controlled search engine for geodata.
Litix GmbH(litix.ch) Data extraction from document archives for map visualization and process support.
Focus on environment, agriculture and remote sensing:
ExoLabs AG(exolabs.ch) Analysis of Earth Observation data for environmental monitoring.
Gamaya SA(gamaya.com) Increasing efficiency and reducing CO₂ in agriculture.
Meteomatics AG(meteomatics.com) AI-supported weather data for environmental analysis.
Picterra(picterra.ch) Cloud-based GeoAI platform for analyzing Earth Observation images, with a focus on customer-specific AI solutions.
Pix4D SA(pix4d.com) Photogrammetry for point cloud analysis, strong in agricultural practice.
Focus on urban planning and infrastructure:
LaGrand GmbH(lagrand.ch) Analysis of temporal changes in images for informed urban decisions.
UrbanDataLab(urbandatalab.ch) Location data and analysis tools for risk models and location decisions.
What does the future hold?
The rapid development of GeoAI impressively demonstrates the potential of combining artificial intelligence and geoinformatics. Applications such as voice-controlled assistants in QGIS, ArcGIS or the AI-based search for public geoservices (via Geoharvester) are examples of upcoming innovations. These technologies will not only revolutionize the way we find and use geodata but also make it accessible to a wider audience.
Despite the many opportunities offered by GeoAI, the risks should not be underestimated. Particularly around generative AI, critical examination is necessary. The hype surrounding this technology can easily lead to an overestimation of its capabilities. Generative models deliver impressive, but not always reliable, results. Start-ups and other actors should be aware that these technologies require in-depth expertise and careful validation. The unreflective application of such systems carries the risk of making wrong decisions or losing the trust of users.
The running Innovation Booster – Artificial Intelligence offers an opportunity to proactively address these challenges. The initiative builds on the successes of the Databooster and creates a platform to bring together researchers, companies and decision-makers. It will be crucial in helping to shape the next phase of GeoAI in Switzerland – responsibly, sustainably and with an eye to the future.
(Note: Some of the authors of this White Paper are involved in or act in an advisory capacity for the start-ups mentioned. The content presented is based on their expertise and market experience, regardless of their role in these companies.)
GeoAI in der Schweiz: Innovationen, Entwicklungen und Perspektiven
Verfasst durch die Fokusgruppe Spatial Data Analytics (N. Lenz, S. Keller & R. Leiterer)
Seit 2020 hat der Innovation Booster Databooster, eine von Innosuisse unterstützte Initiative der data innovation alliance, Innovationen im datengetriebenen Bereich gefördert und zur Entwicklung neuer Technologien beigetragen. Bereits kurz nach der Gründung der data innovation alliance wurden Geodatenanalysen regelmässig in einer eigenen Expertengruppe diskutiert. Innerhalb des Databoosters bildeten die räumlichen Daten eines von vier Fokusthemen. Ende 2024 wurde der Databooster erfolgreich abgeschlossen und der Übergang zur Nachfolge-Initiative Innovation Booster Artificial Intelligence umgesetzt. Der Abschluss des Databoosters ist der ideale Moment, um Bilanz zu ziehen: Wo steht die Schweiz 2024 bei der Nutzung von GeoAI?
Das vorliegende Dokument gibt einen Überblick über die Entwicklungen der letzten vier Jahre, beleuchtet die Veränderungen in den Technologien und Anwendungsfeldern von GeoAI und stellt die Akteure vor, die diese Transformation massgeblich geprägt haben. Es richtet sich an Forschende, industrielle Akteure und Entscheidungsträger und bietet Orientierung sowie Inspiration für die Chancen und Herausforderungen der nächsten Innovationsphase.
GeoAI 2020-2024
Die Nutzung von künstlicher Intelligenz im GIS-Kontext hat sich in den letzten Jahren von spezialisierten Anwendungen zu einem breiten Spektrum innovativer Technologien entwickelt. Vor vier Jahren wurde GeoAI vor allem im Bereich Computer Vision für die Objekt- und Mustererkennung auf Luftbildern und zur Klassifizierung von Punktwolken eingesetzt. Inzwischen hat sich das Spektrum der Anwendungen deutlich erweitert, unter anderem im Bereich der Auswertung von Zeitreihen im Hinblick auf die Erkennung von Trends oder Anomalien.
Nicht nur die Anzahl der KI-Werkzeuge hat zugenommen, sondern auch ihre Anwendungsmöglichkeiten. So wurden KI-gestützte Geodatenanalysen u.a. in den Bereichen Mobilität (Fahrplanoptimierungen, Lenkung von Passagierströmen), Tourismus (Empfehlungssysteme zu Ausflugszielen und Routenschwierigkeiten), oder im Versicherungswesen (Risikoabschätzungen, Prognosen) eingesetzt.
Hauptgrund für diese Entwicklung ist, dass neue KI-Technologien massentauglich wurden. Dadurch liess sich die Nutzung nicht nur im Forschungskontext, sondern auch in der Wirtschaft und der öffentlichen Verwaltung erweitern. Gerade letztere hat dazu beigetragen, dass innovative Anwendungen auch für die breite Bevölkerung sichtbar wurden.
Beispiel: Einsatz von GeoAI in den Bundesstellen – Pollenmonitoring durch MeteoSwiss (aus einer Präsentation von Bertrand Loison, BFS – SITC 2024)
Ein entscheidender Faktor für die Verbreitung von KI-Anwendungen ist die rasante Entwicklung von Sprachmodellen als Teil der generativen KI. Diese Technologien erweitern bestehende Anwendungen und schaffen völlig neue Möglichkeiten. Sprachgesteuerte Geodatensysteme ermöglichen beispielsweise verbesserte Suche in grossen Datensammlungen oder eine intuitivere Nutzung von GIS, wie beispielsweise für die Datenerfassungs-Formular-Erstellung oder aber um Textanfragen in SQL- oder Python-Code umzuwandeln.
Diese neuen Möglichkeiten und der verstärkte Fokus auf Benutzerfreundlichkeit haben die GeoAI-Anbieterlandschaft nachhaltig verändert. Viele neue Akteure entwickeln oder nutzen neue Technologien, die Geodaten effizienter bewirtschaften und ungenutzte Potenziale erschliessen. Der Einfluss von Open Source ist schwer zu erfassen. Nur so viel: Open Source spielt eine immer wichtigere Rolle, sei es als Softwarekomponente oder als offenes Sprach- oder Foundation-Modell. Es fördert Innovation, Verbreitung, Transparenz, Vertrauen, Datenschutz und führt letztlich zu Kostenreduktion und Demokratisierung (durch niedrige Einstiegshürden).
Welche Rolle spielen aktuell die bekannten GIS-Unternehmen?
Etablierte Schweizer GIS-Anbieter haben die Nutzung von GeoAI längst entdeckt. Bekannte Anbieter wie EBP, ESRI Schweiz, Geocloud, GeoDataSolutions, Geowerkstatt, Hexagon oder Meteotest (Auswahl nicht abschliessend) haben in den letzten Jahren bedeutende Fortschritte bei der Integration von KI in ihre GIS-Anwendungen erzielt. Sie haben erfolgreich KI-Technologien in ihre jeweiligen Ziel-Branchen getragen und zusammen mit den Auftraggebern aus dem privaten und öffentlichen Sektor angewendet.
Beispiel: Die Produktfamilie Data Science/Deep Learning von ESRI – integriert in Microsoft Azure.
Neben diesen etablierten Anbietern haben einige Start-ups der letzten Jahre den Schritt zu anerkannten und etablierten Marktteilnehmern geschafft. Firmen wie Gamaya, Meteomatics, Picterra und Pix4D haben ihre innovativen Technologien kontinuierlich weiterentwickelt und in verschiedenen Branchen fest verankert. Diese Unternehmen stehen heute für den erfolgreichen Transfer von GeoAI-Innovationen aus der Gründungsphase hin zu marktfähigen Produkten und Dienstleistungen, die sowohl national als auch international Anwendung finden.
Dynamik bei Start-ups und Kleinfirmen
Durch den Einstieg neuer, innovativer Start-ups erfährt die Geoinformatik aktuell eine neue Dynamik. Junge Unternehmen bringen spezialisierte Lösungen auf den Markt und nutzen dabei modernste Technologien aus der KI. Die Sprache ist von Firmen wie Ageospatial, askEarth, Exolabs, LaGrand, Litix oder UrbanDataLab, welche neue Technologien nutzen, um spezifische Herausforderungen im Umgang mit Geodaten zu lösen. Dabei bringen sie frischen Wind in den Markt, indem sie die Grenzen traditioneller Anwendungen erweitern und Geodaten für neue Zielgruppen erschliessen.
Beispiel: Die Geoforge Anwendung von Ageospatial – Geodatenanalyse mit Large Language Models.
Diese Jungunternehmen zeigen, dass die Zukunft der GeoAI nicht allein von etablierten Akteuren gestaltet wird. Sie bringen neue Ideen und Ansätze ein, die den Markt beleben und neue Standards setzen könnten. Ob diese Jungunternehmen sich langfristig einen Platz unter den etablierten Anbietern sichern oder wie der Markt sich insgesamt entwickeln wird, bleibt offen. Klar ist jedoch, dass Innovation und Anpassungsfähigkeit in einem dynamischen Umfeld wie der GeoAI entscheidend sind – sowohl für aufstrebende als auch für bereits etablierte Unternehmen.
Innovative Start-ups und Kleinfirmen in der Geoinformatik
askEarth AG(ask.earth) Sprachgesteuerte Suchmaschine für Geodaten.
Litix GmbH(litix.ch) Datenextraktion aus Dokument-Archiven zur Kartenvisualisierung und Prozessunterstützung.
Fokus Umwelt, Landwirtschaft und Fernerkundung
ExoLabs AG(exolabs.ch) Analyse von Erdbeobachtungsdaten für Umweltüberwachung.
Gamaya SA(gamaya.com) Effizienzsteigerung und CO₂-Reduktion in der Landwirtschaft.
Meteomatics AG(meteomatics.com) KI-gestützte Wetterdaten für Umweltanalysen.
Picterra(picterra.ch) Cloudbasierte GeoAI-Plattform zur Analyse von Erdbeobachtungsbildern, mit Fokus auf kundenspezifische KI-Lösungen.
Pix4D SA(pix4d.com) Photogrammetrie für Punktwolkenanalysen, stark in der landwirtschaftlichen Praxis.
Fokus Stadtplanung und Infrastruktur:
LaGrand GmbH(lagrand.ch) Analyse zeitlicher Veränderungen in Bildern für fundierte urbane Entscheidungen.
UrbanDataLab(urbandatalab.ch) Standortdaten und Analysetools für Risikomodelle und Standortentscheidungen.
Was bringt die Zukunft?
Die rasante Entwicklung von GeoAI zeigt eindrucksvoll, welches Potenzial in der Verbindung von Künstlicher Intelligenz und Geoinformatik steckt. Anwendungen wie sprachgesteuerte Assistenten in QGIS, ArcGIS oder die KI-basierte Suche nach öffentlichen Geodiensten (via Geoharvester) stehen beispielhaft für bevorstehende Innovationen. Diese Technologien werden nicht nur die Art und Weise revolutionieren, wie wir Geodaten finden und nutzen, sondern sie auch für ein breites Publikum zugänglich machen.
Trotz der vielen Chancen, die GeoAI bietet, gilt es, die Risiken nicht zu unterschätzen. Besonders im Bereich der generativen KI ist eine kritische Auseinandersetzung notwendig. Der Hype um diese Technologie kann leicht dazu führen, ihre Fähigkeiten zu überschätzen. Generative Modelle liefern beeindruckende, aber nicht immer verlässliche Ergebnisse. Start-ups und andere Akteure sollten sich bewusst machen, dass diese Technologien fundiertes Fachwissen und sorgfältige Validierung erfordern. Die unreflektierte Anwendung solcher Systeme birgt die Gefahr, falsche Entscheidungen zu treffen oder das Vertrauen der Nutzer zu verlieren.
Mit dem laufenden Innovation Booster – Artificial Intelligence bietet sich die Gelegenheit, diesen Herausforderungen proaktiv zu begegnen. Die Initiative knüpft an die Erfolge des Databoosters an und schafft eine Plattform, um Forschende, Unternehmen und Entscheidungsträger zusammenzubringen. Sie wird entscheidend dazu beitragen, die nächste Phase von GeoAI in der Schweiz mitzugestalten – verantwortungsbewusst, nachhaltig und zukunftsorientiert.
(Hinweis: Einige der Autoren dieses Whitepapers sind an genannten Start-ups beteiligt oder in beratender Funktion tätig. Die dargestellten Inhalte basieren auf ihrer Expertise und Markterfahrung, unabhängig von ihrer Rolle in diesen Unternehmen.)
On February 13th a webinar about AI-driven tools in the field of scouting,recruiting and matchmaking was organized by the Innovation Booster Artificial Intelligence. This webinar was an inspiring event for the attending recruiters, HR professionals, innovators, and project leaders looking to harness the power of AI and collaborative platforms to drive efficiency, foster innovation, and unlock new opportunities.
According to McKinsey (2025), over 85% of companies will experience skills gaps in key areas in the next few years, with job seekers becoming more demanding and new hires quite volatile, which will exacerbate the challenges. Therefore, there is a need to further develop appropriate digital recruitment strategies while avoiding over-reliance on AI, which could lead to a lack of personalization and thus negatively impact the candidate experience. The challenge in general is to find the right balance between efficiency and personalization and, of course, to operate within the given ethical, legal and regulatory framework.
Two experts from Rockstar Recruiting and Innofuse shared insights, prototypes, and platforms designed to address one of the biggest challenges in today’s professional landscape: connecting the right people with the right opportunities across companies and industries. Klaus Fuchs from Rockstar Recruiting presented an novel AI-based VC screening prototype developed through a Data Booster booster – saving recruiters valuable time by analyzing and pre-filtering hundreds of CVs in parallel – making recruiting faster, cheaper and fairer for everyone involved.
The CV tool developed by Rockstar for competence/skill screening and analyzing the match of needs.
Ivan Sanicola from Innofuse showcased their innovative platform, designed to connect potential project stakeholders from different organizations through skill-based matching – enabling seamless collaboration and knowledge sharing.
Secured match-making in the Innofuse match-making reactor, considering inter alia personal and organizational skills, initiatives, networks, interests, projects
If you missed this event you can find the hand-outs of the presentation here:
February 12, 2025, by Reik Leiterer, data innovation alliance
The mission of Innosuisse’s Innovation Booster program is to enable radical innovation in particular and to promote the generation of ideas and the development of solutions along the way.
In the field of innovation management, various terms are in circulation that at first glance appear to be easily categorizable and understandable. However, the topic of radical innovation is quite complex in detail, since, among other things, there is a different understanding depending on the industry, culture and size of the company (Tellis et al. 2009). It becomes even more difficult when you want to make the degree of radicality measurable and the radicality of different innovations comparable (Zhang & Tan 2022). This requires quantifiability, which can only be reconciled to a limited extent with the openness of the concept of radical innovation.
This challenge is not new – already Green et al. (1995) stated quite some years ago: “For almost 30 years, innovations have been characterized as radical or incremental. Nevertheless, the construct has not been precisely defined, and ad hoc measures have been the norm in the literature.” And we haven’t really got much further in this area yet – which is why we are at least trying to communicate our understanding transparently below.
What do we understand by the term “radical innovation” in the IB Artificial Intelligence when we evaluate the submitted applications
Our Idea Evaluation Committee consists of external experts and, as part of the evaluation, they assess the technology on the one hand and the market and business model on the other. By technology, we also consider product and process innovations, and a high impact on the market also includes service and social innovation.
The following combinations are thus considered radical:
1) New technology & new market 2) New technology & new business model 3) New technology & high impact on the market
What does this mean in detail? – In principle, we use the well-known 4-field models, such as the one by Henderson & Clark, to assess the radicalness of an idea. These models have – to put it very simply – two dimensions: technology (existing/new) on the one hand and market (existing/new) on the other. Depending on the model, the dimension “business model” or the term “architecture” is also used instead of the dimension “market” and “component knowledge” is used instead of technology. Accordingly, a distinction is made between four different types of innovation in this respect, although there are no clear boundaries, and the transitions are quite fluid:
The challenge here lies in assessing these dimensions, i.e. state of technology and the market/business model. For example, the question, at what point is a technology new? IBM was already working with language models in the 1980s, and in the 1990s, deep learning was increasingly used in the field of NLP… and OpenAI with its chatbot is ultimately part of this series of developments that build on each other. And the same applies to the business model. Business models that have long been established in other areas can be completely new for certain sectors. So, there is room for interpretation, which is why we have decided on a panel of experts who will then decide based on majority rule.
Alright, if you now look at the dimension “impact on the market” instead of the dimension “market” or the “business model”, there is a different diagram:
Can you spot the difference? 😉
From our point of view, the following figure provides a better concept understanding by clearly illustrating the three dimensions (cf. Breakthrough Innovation):
Okay, now we have the categories, but how do you evaluate ideas in terms of which category they belong in? Organizations frequently struggle with measuring the degree and performance of their (radical) innovation activities. Due to the uncertainty and ambiguity involved, current key performance indicators (KPIs) are often not useful in the context of radical innovation, associated with very inconsistent outcomes, and do not appear to measure what they purport to measure (cf. Stiller et al. 2021, Kristiansen & Ritala 2018, Kasmire et al. 2012).
In the evaluation process of the IB Artificial Intelligence, we therefore also consider the following measures, proposed (and described in more detail) by Kristiansen & Ritala (2018).
1) Market orientation: Many technologically novel products fail the actual market test, and firms should therefore pay attention to how they are oriented toward the market for their radical innovation activities.
2) Learning and future opportunities: Firms should encourage opportunities that ensure positive conditions for new opportunities to emerge and even to foster growth in existing business segments. Firms should think about how to de-brief key learnings from the process. Finally, firms should also think about how they would like to use and grow core competencies, including the increase in the relevant knowledge base of the firm.
3) Resource dedication: Radical innovation activities may need substantial intangible resources in the form of highly skilled, cross functional teams. When radical innovation projects mature in the pipeline, they will eventually require an increased allocation of financial resources to get to market. Firms should ex ante decide whether the resources will be available when they are needed.
So much for a brief insight into the theory. If you would prefer a short definition style of explanation, we like the one proposed by Assink (2006) (adapted/extended):
“Radical innovation is a successfully commercialized new product, process, or concept that significantly modifies the demand and needs of an existing market or industry, displacing the previous major players and creating entirely new business practices or markets with significant societal impact. Radical innovation often also requires a corporate culture shift in terms of both internal knowledge management and resource allocation.”
Assink, M. (2006). Inhibitors of disruptive innovation capability: conceptual model. European Journal of Innovation Management, 9 (12), 215 – 233.
Green, S.G., Gavin, M.B., & Aiman-Smith, L. (1995). Assessing a Multidimensional Measure of Radical Technological Innovation. IEEE Transactions on Engineering Management, 42 (3), pp. 203 – 214.
Kasmire, J., Korhonen, J.M., & Nikolic, I. (2012). How Radical is a Radical Innovation? An Outline for a Computational Approach. Energy Procedia, 20, 346 – 353.
Kristiansen, J.N. & Ritala, P. (2018). Measuring radical innovation project success: typical metrics don’t work. Journal of Business Strategy, 39 (4), pp. 34 – 41.
Stiller, I., van Witteloostuijn, A., & Cambré, B. (2021). Do current radical innovation measures actually measure radical drug innovation? Scientometrics, 126 (2), pp. 1049 – 1078.
Tellis, G.J., Prabhu, J.C., & Chandy, R.K. (2009). Radical Innovation across Nations: The Preeminence of Corporate Culture. Journal of Marketing, 73(1), 3 – 23.
Zhang, J., & Tan, R. (2022). Radical Concept Generation Inspired by Cross-Domain Knowledge. Applied Science, 12, 4929.
Radikale Innovation: Grundlagen
Das Innovation Booster Programm von Innosuisse verfolgt vor allem das Ziel, radikale Innovation zu ermöglichen und eine entsprechende Ideengenerierung und Lösungsfindungen auf dem Weg dorthin zu fördern.
Im Innovationsmanagement sind hierbei verschiedene Begrifflichkeiten im Umlauf, die auf dem ersten Blick gut kategorisierbar und verständlich sind. Im Detail ist die Thematik der radikalen Innovation jedoch recht komplex, da unter anderem sowohl branchenspezifisch und kulturell bedingt als auch abhängig von der Unternehmensgrösse ein anders Verständnis vorliegt (Tellis et al. 2009). Noch schwieriger wird es, wenn man den Grad der Radikalität messbar und die Radikalität verschiedener Innovationen vergleichbar machen möchte. Dies setzt eine Quantifizierbarkeit voraus, was nur bedingt mit der Offenheit der Begrifflichkeit in Einklang zu bringen ist. Diese Herausforderung ist nicht neu – bereits Green et al. (1995) stellten vor einigen Jahren fest: „Seit fast 30 Jahren werden Innovationen als radikal oder inkrementell charakterisiert. Dennoch wurde das Konstrukt nicht genau definiert, und Ad-hoc-Maßnahmen waren in der Literatur die Norm.“ Wir sind auch aktuell in diesem Bereich noch nicht viel weitergekommen – weshalb wir im Folgenden zumindest versuchen, unser Verständnis von radikaler Innovation transparent zu kommunizieren.
Was verstehen wir unter dem Begriff „radikale Innovation“ im IB Artificial Intelligence, wenn wir die eingereichten Anträge evaluieren
Unser Evaluation Committee besteht aus externen Experten und im Rahmen der Evaluation beurteilen sie auf der einen Seite die Technologie und auf der anderen Seite den Markt und das Geschäftsmodell. Unter Technologie verstehen wir auch Produkt- und Prozessinnovationen und der high impact on the market beinhaltet auch Service und Social Innovation.
Dementsprechend gelten folgende Kombinationen als radical:
New Technology & new market
New Technology & new business model
New technology & high impact on the market
Was bedeutet dies nun im Detail? Grundsätzlich orientieren wir uns bei der Beurteilung der Radikalität an dem bekannten 4-Felder-Modellen, wie z.B. das nach Henderson & Clark. Diese Modelle haben – stark vereinfacht erklärt – zwei Dimensionen: die Technologie (existierend/neu) auf der einen und der Markt (existierend/neu) auf der anderen Seite. Je nach Modell wird statt der Dimension «Markt» auch die Dimension «Geschäftsmodell» oder der Begriff «Architecture» verwendet und statt Technologie findet sich «Component Knowledge». Dementsprechend werden diesbezüglich 4 verschiedene Ausprägungen von Innovation unterschieden, wobei es da keine klaren Grenzen gibt, sondern die Übergänge recht fliessend sind:
Die Herausforderung hierbei liegt bei der Beurteilung von Technologie und Markt: ab wann ist eine Technologie neu? Mit Sprachmodelle hat IBM bereits in den 1980er Jahren gearbeitet, in den 1990er wurde zunehmend Deep Learning im Bereich NLP eingesetzt… und OpenAI mit seinem Chatbot steht letztendlich in dieser Reihe von aufeinander aufbauenden Entwicklungen. Und vergleichbar gilt dies auch für das Geschäftsmodell. Für bestimmte Sektoren können Geschäftsmodelle komplett neu sein, die in anderen Bereichen schon längst etabliert sind. Es gibt also Raum für Interpretationen, weshalb wir uns für ein Gremium aus Experten entschieden haben, das dann nach dem Mehrheitsprinzip entscheidet.
Wenn man sich nun statt dem «Markt» oder dem «Geschäftsmodell» sich den «Impakt auf den Markt» anschaut, gibt es ein anderes Diagramm:
Der Unterschied ist nicht so richtig selbsterklärend, oder?
Wir bevorzugen deshalb eher die folgende Abbildung, welche den Impact als dritte Dimension integriert und das Zusammenspiel der verschiedenen Aspekte unserer Meinung nach gut veranschaulicht (vgl. Breakthrough Innovation):
Nun haben wir Kategorien, aber wie bewertet man Ideen im Hinblick darauf, zu welcher Kategorie sie gehören? Organisationen haben häufig Schwierigkeiten, den Grad ihrer (radikalen) Innovationsaktivitäten zu messen. Aufgrund der damit verbundenen Unsicherheit/ Mehrdeutigkeit sind die aktuellen KPIs im Zusammenhang mit radikalen Innovationen oft nicht nützlich, da sie mit uneinheitlichen Ergebnissen verbunden sind und die Aussagekraft bezüglich der Radikalität nicht immer gegeben ist (vgl. Stiller et al. 2021, Kristiansen & Ritala 2018, Kasmire et al. 2012).
Im Evaluierungsprozess des IB Artificial Intelligence berücksichtigen wir daher auch die Aspekte, die von Kristiansen & Ritala (2018) vorgeschlagen wurden.
1) Marktorientierung: Viele technologisch neuen Produkte scheitern am eigentlichen Markttest, und Unternehmen sollten daher darauf achten, wie sie sich bei ihren radikalen Innovationsaktivitäten am Markt orientieren.
2) Lernen und zukünftige Chancen: Unternehmen sollten Möglichkeiten fördern, die positive Bedingungen für die Entstehung neuer Chancen schaffen und sogar das Wachstum in bestehenden Geschäftsfeldern fördern. Unternehmen sollten darüber nachdenken, wie sie die wichtigsten Erkenntnisse aus dem Prozess festhalten können und wie sie Kernkompetenzen nutzen und ausbauen möchten, einschließlich der Erweiterung der relevanten Wissensbasis des Unternehmens.
3) Ressourceneinsatz: Für radikale Innovationsaktivitäten sind möglicherweise umfangreiche immaterielle Ressourcen in Form von hochqualifizierten, funktionsübergreifenden Teams erforderlich. Wenn radikale Innovationsprojekte sich entwickeln, werden oft zusätzliche finanzielle Ressourcen benötigt, um auf den Markt zu kommen. Unternehmen sollten im Voraus planen, ob und wann die benötigten Ressourcen verfügbar sein werden.
Soweit ein kurzer Einblick in die Theorie. Wer aber doch eine Erklärung im Stil einer Definition bevorzugt, dem sei die von Assink, M. (2006) empfohlen (angepasst & erweitert):
„Radikale Innovation ist ein erfolgreich verwertetes, neues Produkt, Verfahren oder Konzept, dass die Nachfrage und den Bedarf eines bestehenden Marktes oder einer bestehenden Branche erheblich verändert, die bisherigen Hauptakteure aus dem Markt drängt und völlig neue Geschäftspraktiken oder Märkte mit erheblichen gesellschaftlichen Auswirkungen schafft. Radikale Innovation setzt häufig auch einen Wandel der Unternehmenskultur voraus, was sowohl das interne Wissensmanagement als auch die Ressourcenverteilung betrifft.“
Assink, M. (2006). Inhibitors of disruptive innovation capability: conceptual model. European Journal of Innovation Management, 9 (12), 215 – 233.
Green, S.G., Gavin, M.B., & Aiman-Smith, L. (1995). Assessing a Multidimensional Measure of Radical Technological Innovation. IEEE Transactions on Engineering Management, 42 (3), pp. 203 – 214.
Kasmire, J., Korhonen, J.M., & Nikolic, I. (2012). How Radical is a Radical Innovation? An Outline for a Computational Approach. Energy Procedia, 20, 346 – 353.
Kristiansen, J.N. & Ritala, P. (2018). Measuring radical innovation project success: typical metrics don’t work. Journal of Business Strategy, 39 (4), pp. 34 – 41.
Stiller, I., van Witteloostuijn, A., & Cambré, B. (2021). Do current radical innovation measures actually measure radical drug innovation? Scientometrics, 126 (2), pp. 1049 – 1078.
Tellis, G.J., Prabhu, J.C., & Chandy, R.K. (2009). Radical Innovation across Nations: The Preeminence of Corporate Culture. Journal of Marketing, 73(1), 3 – 23.
Zhang, J., & Tan, R. (2022). Radical Concept Generation Inspired by Cross-Domain Knowledge. Applied Science, 12, 4929.
Im ersten Vortrag von Pia Bereuter und einem Team der FHNW Muttenz wurde der GeoHarvester vorgestellt. Dabei handelt es sich um einen Proof-of-Concept einer einfach zu bedienenden, mehrsprachigen Online-Suchmaschine für Schweizer Geodienste mit offener API und offenem Quellcode. Der GeoHarvester adressiert das Problem des fehlenden zentralen Zugangs zu Geodiensten in der Schweiz. Die Qualität und Vollständigkeit der Metadaten variiert stark und die Aktualisierung der Indizes ist aufwändig. Ziel des Projekts ist die Entwicklung eines Portals mit API, das automatisierte Updates, eine Bewertung der Metadatenqualität sowie Filter- und Sortierfunktionen bietet. Technisch basiert der GeoHarvester auf Natural Language Processing, um Schlüsselwörter aus Metadaten zu extrahieren und die Ergebnisse in vier Sprachen (DE, FR, IT, EN) zu optimieren. Derzeit wird ein grosses Sprachmodell integriert, um die Suche weiter zu verbessern. Für die Zukunft sind eine räumliche Suche und automatische Updates der Datenquellen geplant.
Der zweite Vortrag von Ralph Straumann (EBP) beleuchtete den aktuellen Stand der Schweizer Geoinformationslandschaft sowie die Herausforderungen bei der Produktion und Bereitstellung von Geodaten – und versuchte einige Lösungsansätze aufzuzeigen.
Die Schweizer Geoinformation sei gut aufgestellt, es gebe aber auch Verbesserungspotenzial. Defizite bestünden bei ungenügenden Metadaten, der Auffindbarkeit von Geodaten, uneinheitlichen Nutzungsbedingungen und fehlenden intelligenten Suchfunktionen. Herausforderungen seien die Integration neuer Anwendungen wie BIM oder Echtzeitdaten, eine stärkere Nutzerorientierung und ein optimiertes Tooling. Lösungsansätze sind einheitliche Zugangsplattformen, die Förderung der Mehrfachnutzung (“once only”), Cloud-native Datenstrukturen und interdisziplinäre Zusammenarbeit. Die Vision ist, Geodaten leichter zugänglich und anwendungsorientierter zu machen, um sie gezielt in Wissen umzuwandeln. Die Entwicklung einer datengetriebenen Kultur und fortschrittliche Technologien wie KI sollen diesen Wandel unterstützen.
Stefan Keller schloss das Seminar mit Empfehlungen für Portalbetreiber aus Nutzersicht. Diese Empfehlungen hat er aus einem Dutzend Interviews abgeleitet. Die Interviews ergaben zentrale Defizite in fünf Bereichen: Suche, Zugang, Datenverarbeitung, Datenanalysefähigkeit und Lizenzen. Kritisiert wurden unter anderem veraltete oder unvollständige Metadaten, das Fehlen harmonisierter Standards und die mangelnde technische Reife einiger Datenformate und Schnittstellen. Empfohlen werden die Einführung semantischer Suchfunktionen, die Priorisierung nationaler Datensätze und eine bessere Integration bestehender Portale. Weitere Vorschläge der Interviewten sind einheitliche OGC-Standards für Vektordaten, harmonisierte Lizenzmodelle wie CC0 und die Bereitstellung moderner Datenformate wie GeoParquet. Ziel sei es, den Zugang zu Geodaten einfacher, effizienter und nutzerorientierter zu gestalten. Abschliessend betonte er die Wichtigkeit des Austausches in Foren wie dem GEOWebforum.
Das Webinar zeigte die Dynamik und die Herausforderungen der Schweizer Geoinformationslandschaft auf. Es gab wichtige Impulse für die Weiterentwicklung zentraler Themen wie Datenzugang, Nutzerorientierung und technische Innovation. Die vorgestellten Ideen und Visionen bilden eine solide Grundlage, um Geodaten in Zukunft noch nutzerfreundlicher und anwendungsorientierter zur Verfügung zu stellen.
October 01, 2024, by Reik Leiterer, data innovation alliance
On the 29th of August, the Workshop on Challenges in Data Management in Robotics took place in Biel at the premises of the Swiss Cobotics Competence Center (S3C) to bring together robotics enthusiasts, researchers, and industry professionals to discuss and address the pressing issues surrounding data management in robotics applications.
The workshops was organized by the Innovation Booster Robotics, S3C and the Innovation Booster Artificial Intelligence. S3C represents the national hub for industrial and academic partners to jointly develop and test the next generation of industrial cobotic solutions or their components, and to learn how to design and integrate cobotic solutions under human-centric aspects. The Innovation Booster (IB) are Innosuisse supported programs. IB Robotics is dedicated to fostering radical innovation in the Swiss robotics ecosystem. IB Artificial Intelligence is an open innovation initiative to foster radical innovation using socially- and economically viable AI.
The aim of the full-day workshop was to use keynotes, case studies and subsequent breakout sessions to provide participants with insights into data-related challenges in robotics and to jointly develop possible solutions for overcoming them.
Four complex subject areas with their respective challenges were defined:
Challenge 1: Co-Working and Learning
Understanding human practices within the context of human-robot interaction is crucial for robots to adjust their behaviours appropriately. Not only do technical tasks and ethical considerations come into play, but also the fact that different individuals interact in unique ways, making the development of universally applicable algorithms extremely difficult. Furthermore, ensuring precise communication and task allocation in the human-robot workflow is essential, especially considering the proximity between humans and robots.
Challenge 2: Data Management
Most robots work with both filtered and uncensored data, not only for robot training and learning tasks but also directly acquired in-process by physical sensors. Nowadays, tasks such as training may require a large amount of data. This can be challenging in terms of data overload, costs of data analytics integration, and robust data management practices.
Challenge 3: Responsible Collaboration
Both humans and machines occasionally fail at specific tasks, making it essential to consider failure scenarios in developing robust interaction frameworks. By understanding and leveraging failure data, we aim to improve the design, development, control, and robustness robots, ensuring more resilient and adaptive human-robot interactions. There is a need to explore methods for identifying and capturing failure events, analysing their causes, and utilizing this data to improve the reliability and performance of robotic systems.
Challenge 4: Self-improvement of Robots
One aspect of robustness involves the capacity for a robot to enhance its knowledge and behaviour autonomously. This means it should possess a degree of flexibility to adapt and apply abilities to new situations as needed. Achieving this context-driven, adaptive autonomy, which relies on common-sense knowledge and practical manipulation tasks, demands extensive programming and often involves on-platform data management & analytics.
The workshop day began with a welcome by the organizers and presentations about the opportunities the Innovation Booster’ and the S3C offer for interested organizations from industry and research. Afterwards, the first two challenges were introduced with inspiring keynotes followed by a moderated panel discussion with all the presenters.
The topic “Coworking and Learning” was opened by Baptiste Busch – CEO and Cofounder of AICA. He pointed out the demand for advanced and flexible robotic solutions in the reindustrialization process and the challenges around the sensing of and co-working with robots. Opportunities in this regard were seen around sensing-based control, behavioural programming increasing self-adaptation capabilities, and the use of foundation models. On the way towards cageless cohabitation, changes in the collaboration between robot manufacturers, integrators and end-users would be necessary while regulatory changes will bring additional challenges (e.g. ISO 10218-1:2011 and EU AI Act).
Maryam Rezayati from ZHAW presented as the next speaker possible applications of human-robot interaction (HRI) and outlined how context understanding, contact perception and possible interpretation of human intention by robots could be the way to go. The keynote was closed with project insights of the SmartSenseAI project, which aims for developing robust, extremely low-cost, customizable, flexible multi-purpose skin for cobots, enhanced by cognitive information processing.
Björn Jensen from HSLU and Yves Albers-Schoenberg of Roboto AI addressed the challenges around “Data Management” – from data retrieval and data analysis to data augmentation and the generalizability of data models. It was discussed, how the combination of data, models, and simulations is the base towards data-centric robotics – and with reference to the Moravec’s paradox, that assembling the right data and deploying the right models for sensory processing and perception skills require enormous computational resources.
After the panel discussion, the participants were assigned to the two challenges and worked together on possible solutions and what would be the requirement for starting projects on the identified solutions.
The outcomes of the presentations and discussions around the “Co-Working and Learning” challenge were:
Collaborative robots are still not widely accepted in the industry. There is a need for robots to recognize human actions and adjust their movements accordingly for safety. However, integrating these capabilities is complex, and there’s a general reluctance among manufacturers and integrators due to liability concerns. Third-party entities could play a crucial role in advancing human-robot collaboration by bridging these gaps.
The industry is pushing for more flexible and collaborative production environments where robots can take on repetitive tasks. Yet, existing robots are limited by predefined motions and struggle with understanding context and interpreting human interactions. The challenge lies in transitioning these technologies from research to practical industrial applications.
Human-robot interaction is constantly evolving, and collaboration requires robots to manage the variability in human behaviour, which is not easily predictable. Current approaches rely heavily on data, but there is also a need to focus more on understanding human behaviour beyond scripted interactions. Empowering collaboration requires better data retrieval, analysis, and generalization techniques.
Reinforcement learning in simulated environments helps robots become robust, but translating this learning to real-world environments remains difficult. Robots often struggle to adapt outside of simulations, indicating a need for them to learn more effectively from human behaviours.
Based on the identified challenges, the following ideas were developed and possible collaborations between the participants discussed:
Develop a more effective system for categorizing the skills required based on specific tasks and types of collaboration. And create a unified platform to hare categories.
Establish industry-wide safety standards for human-robot collaboration that are universally applicable, including the creation of adaptable standards, norms, and guidelines for various environments.
Promote partnerships between industry and academic institutions to utilize common datasets on skills, bridging the gap between research and practical applications. This approach could help accelerate the transition of innovative solutions from the lab to the factory floor.
The outcomes of the presentations and discussions around the “Data Management” challenge were:
Managing large, complex datasets is a significant challenge in robotics. It takes considerable effort to curate and process this data for practical use. There is a pressing need for large-scale, public datasets to support advancements in human-robot collaboration.
Data management challenges are central to improving human-robot collaboration. Key issues include the retrieval, analysis, and augmentation of data to handle the variability in human interactions. Effective data management is essential for robots to generalize from specific data to broader applications.
Foundation models hold the potential to transform human-robot collaboration, but they require extensive amounts of data to function effectively. The complexity of managing this data, coupled with increased regulatory liabilities, adds to the challenges.
The following ideas were developed:
Consider ways to handle the variability in human behaviour. These could be trained on diverse datasets to improve robots’ adaptability in real-world situations, allowing for more seamless and effective collaboration.
Create a centralized platform for managing large-scale robotics data. This platform could provide standardized tools for data collection, curation, and processing, making it easier to develop and refine foundation models.
Establish open-source repositories for robotics datasets, curated with respect of the real world.
Develop new data compression methods to handle the vast amounts of data generated by robots. This would enable more efficient storage and faster processing, making it easier to utilize data for training and collaboration.
After the intensive and inspiring morning, there was a networking lunch with the opportunity to have a look on the various services and test options offered by the S3C, including i) realistic, industrial-like test environments with confidential testing conditions, ii) adaptable, modular test benches and setups, and iii) scalable options from quick tests to extensive, long-term testing.
After lunch, the afternoon session starts with the topic “Responsible Collaboration”. Andreas Hufschmid from PILZ explained why a holistic safety concept is required in the field of industrial robot systems and while dealing with HRI. This considers both machinery safety and industrial security and is mainly addressed in the ISO 10218 standard, created in recognition of the particular hazards that are presented by industrial robots and industrial robot systems. For this, risk assessments should be conducted to determine what the protective measures should be.
Andrei Cramariuc from the Robotic System Lab (ETHZ) presented the challenges in cases, were robots need to respond to human interactions or should perform complex, everyday tasks in dynamic environments. For this, approaches such as kinaesthetic guidance or teleoperation are currently explored.
Sina Mirrazavi from the AI Institute and Sylvain Calinon from the IDIAP research institute talked about the state of the art of “Self-improvement of Robots”. Even if robots can act highly robust in simulated environments they still often struggle if exposed to real-world applications. This could be solved, if robots are enabled to adapt und improve their performance using their own real-world experiences (e.g. via tensor networks) and/or learning form human behaviours. But here, too, there is no one-size-fits-all solution.
After the break-out sessions again, the outcomes around the “Responsible Collaboration” challengewere presented:
Safety is a critical concern in human-robot collaboration, with collision forces being a primary issue. Current safety standards are essential but require ongoing verification and validation to ensure effectiveness as regulations evolve.
Robots must be able to respond to human interactions and perform complex, everyday tasks in dynamic environments, i.e. dealing also with uncertainties and adapt to changes. Different approaches (e.g. kinaesthetic guidance and teleoperation) are being explored to improve how robots learn and interact in real-time scenarios.
Balancing safety with innovation is a major challenge, especially in public spaces and assistive robotics. There is a growing recognition that safety by design must be integrated into the development process, with reinforcement learning playing a potential role in achieving this balance.
Related to the “Self-Improvement of Robots” the following challenges were identified:
Robots often struggle when transitioning to real-world applications. The challenge is to enable robots to adapt and improve their performance based on real-world experiences, learning from human behaviour.
Research is focused on enhancing robots’ capabilities beyond basic tasks, such as using their entire body for interactions. Efforts are underway to develop more sophisticated data structures and learning strategies, like self-learning with tensor networks, to improve robots’ adaptability and performance.
A key area of focus is training robots to specialize in specific tasks, such as assembly, by refining foundation models. The ability to standardize data and share solutions across platforms could significantly advance the self-improvement of robots.
Based on these challenges, the following ideas were discussed and shaped:
Facilitate the sharing of models and simulations across different platforms, including sharing of successful learning strategies among different robots and platforms (potentially through a centralized knowledge base).
Extend the application of reinforcement learning beyond simulations by enabling robots to learn directly from real-world interactions, possibly within controlled environments where they can safely experiment and refine their skills, i.e. gradually expanding their ability to adapt to real-world norms as they become more capable. In addition, implementing real-time feedback loops could be of interest to allow robots to instantly adjust their actions based on human responses. This approach could also encourage mutual learning between humans and robots.
Develop specialized foundation models tailored to specific tasks, such as assembly or inspection, to enhance efficiency and effectiveness in improving robot performance within these domains.
Ideas discussed during the workshop can now be submitted to the IB Robotics (next DL 13th of September) or to the IB Artificial Intelligence for further funding in order to develop them further in terms of feasibility, viability and desirability.
September 08, 2024, by Reik Leiterer, data innovation alliance
The aim and motivation of the RiskON initiative are to promote the further development of risk management in Switzerland under the patronage of sminds AG/N9 House of Innovation, the program management of the University of Zurich, especially of the UZH Innovation Hub, including business partners such as Bank Julius Baer, LGT Bank Switzerland, Pictet, EFG International and the Association of Swiss Cantona Banks.
Actively joined strategic partners in 2024 were Swiss Financial Innovation Desk (FIND), Swiss Risk Association and the Innosuisse Innovation Booster Artificial Intelligence. The latter will allow for the practice transfer after the RiskON Hackthon – a practice transfer for co-innovation between banking representatives and students, guided by the UZH faculty.
The RiskON brought together professional risk expertise with enthusiastic young academics in the format of a ‘Risk-/Hackathon’ with the aims to provide concrete solutions for real challenges in non-financial, financial, and digital risks: at RiskON 2024, experience and youth, curiosity and established professionalism, commitment and openness met for the second time at the University of Zurich to jointly develop comprehensive and digital risk management solutions.
The RiskON 2024 had three concrete challenges with 15 teams and 53 students to work on and produced use cases and approaches for the banks involved:
Challenge-1 ‘Use of new technologies for risk events classification and analysis’ Financial institutions, as part of their risk frameworks, are required to capture, investigate/analyze and report on risk events. Given the volume of such events, their handling and analysis may be cumbersome and resource intensive. So how to leverage new technologies to facilitate the classification of risk events and their analysis?
Challenge-2 ‘Fraud Risk Detection – How artificial intelligence can help’ Fraud risk, external and internal, is currently among the top risks in the financial sector. Big data and the rapid development of artificial intelligence has, unfortunately, also contributed to that over the past few years. On the other hand, AI-methods can be efficiently used by banks for early detection of fraud risk. In this context, a pragmatic approach for using AI methods and tools as part of a fraud risk detection tool with a focus on Private Banking business profiles is required.
Challenge-3 ‘How can AI be leveraged and enabled to enable CRO employees to work more efficiently’ By focusing on either completing counterparty due diligence questionnaires, enhancing the Anti-Money Laundering (AML) alert resolution process or streamlining, harmonizing, translating, and updating legal client forms using advanced analytics techniques, Optical Character Recognition (OCR), and NLP, ideas for improving, scaling and automating tasks performed by Chief Risk Officer (CRO) employees are needed (incl. considering the associated risks, limitations and implementation cost).
The participating, interdisciplinary teams were able to deal intensively with the challenges in advance and, after a brief introduction by the organizers and a description of the hackathon’s procedure, they moved to their break-out rooms to work on their projects. Here they were coached not only by the challenge owners, i.e. the finance institutions, but also by experts from the fields of finance, risk management and technology integration.
The following day – and for many of the participants after a rather short night – the results were presented separately for each challenge in front of a jury and discussed together with the bank’s representatives. All the results were consistently of a very high standard, both in terms of conceptual depth and technological implementation, as well as in terms of reflection on the challenges and basic understanding of the complex challenges worked on.
The award ceremony and networking aperitif took place in the center of Zurich – and gave the winners of each challenge the chance to present their results again in front of all participants and in a festive setting. In addition, the award ceremony dinner and the unofficial closing aperitif were used extensively to exchange ideas with the industry and research experts present – and to discuss possible next steps in the teams after this RiskOn experience.
For the winning teams, these steps are clear: the innovative solutions will receive funding and support to ensure practical implementation. Within six months, a Minimum Viable Product (MVP) or Proof of Concept (POC), showcasing the feasibility, viability and desirability of the ideas, will be put into motion. The innovation teams will also get the opportunity to co-author articles and white papers with UZH professors, gaining access to cutting-edge research, enhancing academic credentials and thereby allowing for academic transfer.
August 08, 2024, by Reik Leiterer, data innovation alliance
In open innovation, creating a safe space to share knowledge and ideas is vital for successful co-creation. This entails establishing a legal framework for open innovation by creating policies and guidelines that foster collaboration, protect intellectual property (IP) rights, ensure fair use, and maintain compliance with relevant laws. The following video explains how to enable a trust-building setting with rules of participation for an open innovation program and for collaborating teams.
In the frame of Intellectual Property Management, create and/or follow guidelines on the ownership and sharing of IP created through open innovation, including e.g. joint ownership, licensing agreements, or IP transfer policies. Create understanding on how patents and trademarks will be handled, including the set-up of agreements on filing and maintaining IP protection. If necessary, use non-disclosure agreements (NDAs) to protect sensitive information shared during collaboration.
With regard to compliance with laws and regulations, be aware of data protection laws (e.g., GDPR, CCPA) when handling personal or sensitive data, comply with export control regulations that may affect the sharing of technology or information across borders, and avoid anti-competitive practices by ensuring that collaboration does not lead to market monopolization or unfair trade practices. May be consider using Creative Commons and open source licenses (e.g., MIT, GPL) to facilitate and ensure legal sharing, contribution and reuse of creative works.
We always recommend establishing ethical guidelines to ensure that innovations are developed and used responsibly. In addition, the incorporation of sustainability criteria into the innovation process could be something to think about to promote environmentally and socially responsible practices.
July 4, 2024, by Reik Leiterer, data innovation alliance
The Swiss Conference on Data Science (SDS) is Switzerland’s premier event for applied data science. The conference brings together leaders and science and business experts to exchange ideas and drive innovation in products and services, with a focus on the Swiss market. The SDS2024 took place in Zurich on May 30-31 at The Circle Convention Centre, Zurich Airport. If you want to get an impression how it was, have a look on the SDS2024 Flashback Video!
The 2-day conference started with an interactive workshop day to provide in-depth, practical and application-oriented insights into the latest developments in the field of data science and Artificial Intelligence. Over 450 participants took advantage of these opportunities and were able to benefit from exciting and professionally prepared and conducted workshops. Two of the workshops were supported by the Innovation Booster Artificial Intelligence to identify challenges and discuss possible ideas for radical solutions.
Next-Gen Cleantech Solutions: Mining Insights from Media and Patent Data with Natural Language Processing (NLP) and Large Language Models (LLMs)
At a time when tackling environmental challenges is of paramount importance, the cleantech industry plays a central role in promoting sustainable solutions. However, technological innovation in the cleantech sector requires a deep understanding not only of the technologies, but also of the market requirements. The workshop addressed the challenge how this information, usually embedded in a large amount of patent and media data, could be analysed using Natural Language Processing (NLP) and the latest advancements in Large Language Models (LLMs).
The workshop started with a talk about Disentangling the Global Innovation Landscape by J. Lipenkova and expert techniques were presented for analysing patent and media data for cleantech innovation including NLP, LLMs, RAG, and LLMs-augmented recommender systems. These inputs were then applied in a hands-on session and transferred to specific use cases, where the participants were able to try out the presented LLM-powered cleantech question-answering and recommendation system.
They key challenges identified and discussed were:
i) How to identify use cases and workflows in the cleantech sector that can be supported with natural language processing, large language models and retrieval-augmented generation techniques?
ii) How to evaluate the business value of different technical variations and how to quantify the ROI of such systems?
Generative AI has reached broad attention in the media over the last months. Different new use cases have been identified to support people in their daily work and make their work more efficient. But what about the well-being of the individuals? Different studies have shown that there is a rise of stress, also in Switzerland. On the one side, technologies such as chatbots or coaching technologies can support mental health or therapy in the setting of blended therapy. On the other side, there is a huge potential of multimedia interventions for elderly people, patients or stressed workers.
In this interdisciplinary workshop with a mixture of talks and hands-on parts, the different directions possible were discussed and how these latest technologies can be applied for the well-being of humans. One example was, how language models could be leveraged for advanced conversational interactions in the digital health domains or more in general, how generative AI could be a suitable technology in mental health care. Current challenges include the sometimes-limited patients health literacy which could leads to less effective treatments. This could be addressed with digital assistants providing personalized information’s and thus may increase patients therapy adherence. The practical part was all about enhancing well-being through multimedia generative AI with a focus on image and sound generation.
The day was concluded with a networking Apero and the presentation of the Swiss Viz Awards.
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional
Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.